ENVIRONMENTAL PRODUCT DECLARATION as per ISO 14025 and EN 15804 Owner of the Declaration ARGE; European Federation of Associations of Lock and Builders Hardware Manufacturers Programme holder Institut Bauen und Umwelt e.V. (IBU) Publisher Institut Bauen und Umwelt e.V. (IBU) Declaration number EPD-ARG-20160183-IBG1-EN ECO EPD Ref. No. ECO-00000412 Issue date 14.09.2016 Valid to 13.09.202 #### Door closers # ARGE; European Federation of Associations of Lock and Builders Hardware Manufacturers (This EPD is valid only for products supplied by an ARGE EPD licence holder) www.ibu-epd.com / https://epd-online.com CISA S.p.A. (www.cisa.com) provides this EPD under the licence of National Association of Manufacturers Locks and Hardware Handles - Assoferma (www.assoferma.it) #### **General Information** ### **ARGE** #### Programme holder IBU - Institut Bauen und Umwelt e.V. Panoramastr. 1 10178 Berlin Germany #### **Declaration number** EPD-ARG-20160183-IBG1-EN #### This Declaration is based on the Product **Category Rules:** Building Hardware products, 02.2016 (PCR tested and approved by the SVR) #### Issue date 14.09.2016 #### Valid to 13.09.2022 Wermanes Prof. Dr.-Ing. Horst J. Bossenmayer (President of Institut Bauen und Umwelt e.V.) Dr. Burkhart Lehmann (Managing Director IBU) #### Door closers #### Owner of the Declaration ARGE: European Federation of Associations of Lock and Builders Hardware Manufacturers Offerstraße 12, 42551 Velbert Germany #### Declared product / Declared unit 1 kg of door closer This ARGE EPD covers door closing devices designed to control the closing action of a door. The reference product used to calculate the impact this product group has on the environment is a door closer composed primarily of steel, aluminium and zinc-based alloy and has been selected for the LCA (Life Cycle Assessment) because it is the product with the highest impact for 1 kg of product. A validity scope analysis has also been carried out to determine the limiting factors for door closing devices covered by this EPD. In a preliminary study (simplified LCA), it has been confirmed that this EPD represents the worst case condition and it can therefore be used to cover all door closing devices manufactured in Europe by ARGE member companies. The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences. #### Verification The CEN Norm /EN 15804/ serves as the core PCR Independent verification of the declaration > according to /ISO 14025/ internally externally Dr. Frank Werner (Independent verifier appointed by SVR) #### **Product** #### **Product description** This EPD refers to door closer and door coordinator devices used to control the closing action of a door. #### **Application** These products are designed to be integrated into door assemblies of varying materials and applications. Their purpose is to control the closing action of the door. They may be used for either interior or exterior doors. #### **Technical Data** Ideally, products should comply with a suitable technical specification. /EN 1154/ and /EN 1158/ are examples of such specifications and some products will comply with these. The relevant grading structure for /EN 1154/ is shown in the following table | Name | Value | Unit | |----------------------|---------------|-------| | Category of use | 3, 4 | Grade | | Durability | 5, 8 | Grade | | size | 1 - 7 | Grade | | Fire resistance | 0, 1 | Grade | | Safety | 1 | Grade | | Corrosion resistance | 0, 1, 2, 3, 4 | Grade | #### 2.4 Application rules For placing on the market in the EU/EFTA (with the exception of Switzerland) EU Regulation No 305/2011 "Construction products regulation" applies. Accordingly products shall be CE marked to /EN 1154/ - Controlled door closing devices or /EN 1158/ - Door coordinator devices, and shall have a Declaration of Performance For application and use, additional national provisions may also apply. #### 2.5 Delivery status The products are sold by unit. Deliveries of a single unit might be possible but will be an exception. Regular deliveries will cover a larger amount of door closers as they are put on the market as "B2B" product and not for a final customer. #### 2.6 Base materials / Ancillary materials #### Regarding the product analysed for this EPD: Composition of product analysed for this EPD: The values given in the table below are for the product analysed for this EPD. Ranges of values for other products covered by the validity scope analysis are shown in brackets. | Name | Value | Unit | |----------------------------------|-------|------| | Steel (50.20% – 75.29%) | 75.29 | % | | Aluminium (18.99% – 49.00%) | 19 | % | | Zinc-based alloy (0.00% – 5.17%) | 5.17 | % | | ABS (0.00% – 0.04%) | 0.04 | % | | Brass (0.00% – 0.13%) | 0.13 | % | | Nylon 66 (0.00% – 0.13%) | 0.13 | % | | Polypropylene (0.00% – 0.08%) | 0.08 | % | | Rubber (0.00% – 0.13%) | 0.04 | % | | POM (0.00% – 0.04%) | 0.04 | % | | PEHD (0.00% – 0.80%) | 0.00 | % | The product does not contain substances cited on the REACH list of hazardous substances. **Brass** is an alloy of zinc and copper. Sub-components made of brass are made by forging. **Bronze** is an alloy of mainly copper and tin. Subcomponents made of bronze are made by wire drawing. **Iron** is a metal produced in blast furnace. Subcomponents made of iron are made by sintering. **Steel** is produced by combining iron with carbon as well as other elements depending on the desired characteristics. The subcomponents made of steel are mainly formed by stamping. #### 2.7 Manufacture The production of a door closers and door coordinators normally follows a 3 step procedure: - 1. Prefabrication of the semi-finished products, this step might include a surface treatment on factory site or by external manufacturers. - 2. Preassembly of assembly modules (onsite factory) - 3. Final assembly (onsite factory) The individual parts of the product are assembled manually. ### 2.8 Environment and health during manufacturing Regular measurements of air quality and noise levels are performed by ARGE member manufacturers. The results shall be within the compulsory safety levels. In areas where employees are exposed to chemical products, prescribed safety clothes and technical safety devices shall be provided. Regular health checks are mandatory for employees on production sites #### 2.9 Product processing/Installation The installation of the product could vary depending on the type of door and the specific situation but products shall not require energy consumption for installation. #### 2.10 Packaging Normally each single product is packaged in paper. The products are then packed by batch in a cardboard box and stacked on wooden pallets for transport to the customer. Waste from product packaging is collected separately for waste disposal (including recycling). #### 2.11 Condition of use Once installed, the products shall require no servicing during their expected service lives. There shall be no consumption of water or energy linked to their use, and they shall not cause any emissions. #### 2.12 Environment and health during use No environmental damage or health risks are to be expected during normal conditions of use. #### 2.13 Reference service life The Reference Service Life (RSL) for this product is 30 years. This is based on a mechanical endurance test as specified in /EN 1154/ (/A1). The product is guaranteed to maintain its performance for at least 500 000 cycles of use. #### 2.14 Extraordinary effects #### Fire The product is suitable for use in fire resisting and/or smoke control door sets according to one of the classes in /EN 1154/ or /EN 1158/. #### Water The declared products are intended to be used in buildings under normal conditions. They shall not emit hazardous substances in the event of flooding #### **Mechanical destruction** Mechanical destruction of the declared products shall not materially alter their composition or have any adverse effect on the environment. #### 2.15 Re-use phase Removal of the door closer or door coordinator (for reuse or re-cycling) shall have no adverse effect on the environment. #### 2.16 Disposal Door closer and door coordinator components should be re-cycled wherever possible, providing that there is no adverse effect on the environment. The waste code in accordance with the /European Waste Code/ is 17 04 07. #### 2.17 Further information Details of all types and variants to be shown on the manufacturers' websites listed on http://arge.org/members/members-directory.htm #### 3. LCA: Calculation rules #### 3.1 Declared Unit The declared unit for all products covered by ARGE EPD is 1 kg (of product). Since individual products will rarely weigh exactly 1 kg it is necessary to establish the exact weight of the product then use this as a correction factor to determine the true values for 1 kg of product in the tables (Section 5). A total of 4 typical products (based on sales figures) have been evaluated and the worst case results are used in Section 5 of this EPD #### Correction factor | Name | Value | Unit | |--------------------------|-----------|------| | Declared unit mass | 1 | kg | | Mass of declared product | 2.36 | kg | | Correction factor | Divide by | | | Correction factor | 2,36 | | #### 3.2 System boundary This type of EPD covers "cradle-to-grave" requirements. The analysis of the product life cycle includes the production and transport of the raw materials, manufacture of the product and the packaging materials, which are declared in modules A1-A3. Losses during production are considered as waste and are sent for recycling. No recycling processes are taken into account except transport and electricity consumption for grinding the metals. When recycled metals are used as raw material and only their transformation process is taken into account: not the extraction
of the raw material. A4 module represents the transport of the finished product to the installation site. There is no waste associated with the installation of the product. The A5 module therefore represents only the disposal of the product packaging. For the RSL considered for this study, there are no inputs or outputs for the stages B1-B7. The End-of-Life (EoL) stages are also considered. The transportation to the EoL disposal site is taken into account in module C2. Module C4 covers the disposal of the product. Module C3 covers the recycling of the individual elements according to European averages, with the remaining waste divided between incineration and landfill. The same assumption as for waste to recycling in A3 is used here. For end-of-life modules (C1 to C4) the system boundaries from the XP P01-064/CN standard have been followed, see annex H.2 and H.6 of this document for figures and further details. In practice, the end-of-life has been modelled as follows: - When material is sent to recycling, generic transport and electric consumption of a shredder are taken into account (corresponding to the process "Grinding, metals"). Only then is the material considered to have attained the "end-of-waste" state. Each type of waste is modelled as transport to the treatment site over a distance of 30 km (source: FD P01-015). Parts sent for recycling include an electricity consumption (grinding) and a flow ("Materials for recycling, unspecified"). Four scenarios for the end of life of the products have been declared for this EPD: - 1. 100% of the product going to landfill - 2. 100% of the product going to incineration - 3. 100% of the product going to recycling - 4. Mixed scenario consisting of the previous three scenarios, values depending of the amount of waste going to recycling. Module D has not been declared. #### 3.3 Estimates and assumptions The LCA data of the declared door closer and door coordinator has been calculated by the production data of in total 2 ARGE member companies representing a total amount of 4 different products. These companies had been chosen by ARGE as being representative by means of their production processes and their market shares. The door closers and door coordinators chosen as representative for this calculation follow the "worst case" principle as explained under section 6 LCA interpretation. #### 3.4 Cut-off criteria The cut -off criteria considered are 1% of renewable and non-renewable primary energy usage and 1% of the total mass of that unit process. The total neglected input flows per module shall be at a maximum of 5% of energy usage and mass. For this study, all input and output flows have been considered at 100%, including raw materials as per the product composition provided by the manufacturer and packaging of raw materials as well as the final product. Energy and water consumption have also been considered at 100% according to the data provided. With the approach chosen, no significant environmental impacts are known to have been cut-off. #### 3.5 Background data For life cycle modelling of the considered product and all relevant background datasets are taken from the ecoinvent 3.1 – Alloc Rec database. The life cycle analysis software used is SimaPro (V8.0.5), developed by PRé Consulting. #### 3.6 Data quality The time factor and life cycle inventory data used comes from: Data collected specifically for this study on the ARGE manufacturers' sites. Data sets are based on 1- year averaged data (time period: January 2013 to December 2013). In the absence of collected data, generic data from the ecoinvent V3 database was used. It is updated regularly and is representative of current processes (the entire database having been updated in 2014). #### 3.7 Period under review The data of the LCA is based on the annual production data of several ARGE member companies from 2013. Other values, e.g. for the processing of the base materials, are taken from the ecoinvent v3.1 Alloc Rec where the dataset age varies for each dataset, see ecoinvent documentation for more information. #### 3.8 Allocation The products are produced in numerous production sites. All data was provided by the manufacturers of the products per unit and then divided by the mass of the product to give a value per kg of product produced. The assumptions relating to the EoL of the product are described in the section System Boundaries. Metal losses during production (stage A3) are considered as waste. 3.9 Comparability Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to /EN 15804/ and the building context, respectively the product-specific characteristics of performance, are taken into account. The used background database has to be mentioned. #### 4. LCA: Scenarios and additional technical information The following technical information is a basis for the declared modules or can be used for developing specific scenarios in the context of a building assessment for Modules Not Declared (MND). Transport to the building site (A4) | Name | Value | Unit | |---|--------|---------| | Litres of fuel | 0.0045 | l/100km | | Transport distance | 3500 | km | | Capacity utilisation (including empty runs) | 36 | % | Installation into the building (A5) | Name | Value | Unit | |---------------|-------|------| | Material loss | 0.344 | kg | #### Reference service life | Name | Value | Unit | |--------------------------------------|-------|------| | Reference service life (condition of | 30 | | | use: see §2.13) | 30 | а | End of life (C1-C4) | Name | Value | Unit | |--|-------|------| | Collected separately (All scenarii) | 1 | kg | | Recycling (Mixed Scenario) | 0.76 | kg | | Energy recovery (Mixed Scenario) | 0.11 | kg | | Landfilling (Mixed Scenario) | 0.13 | kg | | Incineration (100% incineration scenario) Scenario 1 | 1 | kg | | Landfilling (Landfill scenario)
Scenario 2 | 1 | kg | | Recycling (100% recycling scenario) Scenario 3 | 1 | kg | It is assumed that a 16-32 ton truck is used to transport the product over the (up to) 30 km distance between the dismantling site and the next treatment site made (source: FD P01-015). ## Reuse, recovery and/or recycling potentials (D), relevant scenario information As Module D has not been declared, materials destined for recycling have been accounted for in the indicator "Materials for recycling" however, no benefit has been allocated. ### 5. LCA: Results In Table 1 "Description of the system boundary", the declared modules are indicated with an "X"; all modules that are not declared within the EPD but where additional data are available are indicated with "MND". Those data can also be used for building assessment scenarios. The values are declared with three valid digits in exponential form. | form. | | | | _ | | | | | | | | | | | | | | | |--|--|---|--
---|---|--|--
--|---|--|--|--
--|--|---|--
--|---| | | CRIP | TION C | F THE | E SYS | TEM | BOUN | DARY | (X = | INCL | UDED | IN L | .CA; N | IND = | MODL | JLE N | 1 | | | | PROI | DUCT | JCT STAGE CONSTR
ON PROC | | ROCESS | | USE STAGE | | | | | | USE STAGE END OF LIFE STAGE BEYOND SYSTE BOUNDAR | | | ADS
ID THE
TEM | | | | | Raw material supply | Transport | Manufacturing | Transport from the gate to the site | Assembly | Use | Maintenance | Repair | Replacement | Dofinition | Operational energy | esu escaración de la composição co | Operational water use | De-construction
demolition | Transport | Waste processing | Disposal | Reuse-
Recovery- | Recycling-
potential | | A1 | A2 | A3 | A4 | A5 | B1 | B2 | В3 | B4 | \$ B | 5 E | B6 | B7 | C1 | C2 | C3 | C4 | |) | | Х | Х | X | X | X | MNI | D MND | MNI | O MN | D MI | ND M | IND | MND | Х | Х | Х | Χ | M | ND | | RESU | RESULTS OF THE LCA - ENVIRONMENTAL IMPACT: 1 kg of door closer | | | | | | | | | | | | | | | | | | | Param
eter | | Unit | A1-A3 | A4 | A5 | C1 | C2 | C2/1 | C2/2 | C2/3 | C3 | | | | C4 | C4/1 | C4/2 | C4/3 | | GWP | [kg (| CO ₂ -Eq.] | 5.61E+
0 | 5.89E-1 | 1.26E- | 0 | | 5.05E-3 | | | | U | 0 | 8.66E- | | | 1 4.97E-1 | 0.00E+
0 | | ODP | [kg Cl | FC11-Eq.] | 4.71E-7 | 1.08E-7 | 3.47E-
10 | 0.00E+
0 | 9.26E-
10 | 9.26E-
10 | 9.26E-
10 | 9.26E | - 4.52
10 | 1 | E+ 0.00E
0 | + 9.30E
10 | - 2.08E-
10 | 4.02E-9 | 3.43E-9 | 0.00E+
0 | | AP | [kg S | SO ₂ -Eq.] | 3.79E-2 | 2.39E-3 | 1.23E- | 0.00E+
0 | 2.05E-5 | 2.05E-5 | 2.05E- | 5 2.05E- | 5 1.75E | E-5 0.00l | + 0.00E
0 | + 3.60E- | 5 1.04E⊰ | 5 2.58E-4 | 1.24E-4 | 0.00E+
0 | | EP | [kg (F | PO ₄) ³⁻ -Eq.] | 4.97E-3 | 4.06E-4 | 8.17E- | 0.0051 | 3.48E-6 | 3.48E-6 | 3.48E-6 | 3.48E- | 6 1.96 | 0.00 | | + 4.04E- | 6 1.99E- | 5 7.52E- | 5.94E-4 | 0.00E+
0 | | POCP | [kg et | hene-Eq.] | 4.64E-3 | 2.68E-4 | 3.79E- | 0.00E+ | 2.30E-6 | 2.30E-6 | 2.30E-6 | 6 2.30E- | 6 9.63E | E-7 0.001 | E+ 0.00E | + 1.98E- | 6 4.67E- | 6 1.60E- | 1.41E-4 | 0.00E+
0 | | ADPE | [kg | Sb-Eq.] | | 1.95E-6 | | 0 | 1.67E-8 | 1.67E-8 | 1.67E-8 | 3 1.67E- | 8 1.71 | U | 0 | 3.53E- | 9 1.96E- | 9 4.69E-8 | 3 2.47E-8 | l 0 | | ADPF | | [MJ] | 7.31E+
1 | 0 | 3.32E- | 0 | | 7.69E-2 | | | | 0 | E+ 0.00E
0 | 1.33E- | | | 1 2.80E-1 | 0.00E+
0 | | Captio | | | | | P = Fo |)P = Deple
rmation per
fossil resc | otential o | of tropos | spheric o | ozone p | hotoch | emical o | xidants; A | ADPE = A | | | | | | RESU | JLTS | OF TH | HE LC | A - RE | | RCE U | | | | | | | | | | | | | | Param | eter | Unit | A1-A3 | A4 | A5 | C1 | C2 | C2/1 | C2/2 | C2/3 | СЗ | C3/1 | C3/2 | C3/3 | C4 | C4/1 | C4/2 | C4/3 | | PER | | | | | _ | 0.00E+0 9. | | | | | | | | | 1 | | 1 | | | PER | -+ | | .02E+00. | 1. | ./4E+U | 0.00E+0 | | | | | | | | | | | | | | PER | | | .91E+1 1 | | | 0.00E+0 9. | 61E-4 9 |).61E-4 9 | 9.61E-4 | | 8 35F. | aln nne. | -∩ ∩ ∩∩⊏+ | 0 1.72E-2 | 2 9.33E-4 | 네 4 4 4 도 오 | 12 11 5 | | | PENF
PENF | | | | .13E+0 4 | | 005.07 | | | | | _ | _ | | | - | | | | | PENF | RT | | .87E-1 0. | .00E+0-9 | | 0.00E+0 7.
0.00E+0 0. | 82E-2 7 | '.82E-2 7 | 7.82E-2 | 7.82E-2 | 9.47E- | 2 0.00E | -00.00E+ | 0 1.95E-1 | 1 2.07E-2 | 3.86E-1 | 3.53E-1 | 0.00E+0 | | | | | .15E+19. | .13E+0 3 |).83E-3
.18E-2 | | 82E-2 7
00E+0 0
82E-2 7 | 7.82E-2 7
.00E+0 0
7.82E-2 7 | 7.82E-2
).00E+0
7.82E-2 | 7.82E-2
0.00E+0
7.82E-2 | 9.47E-
0.00E-
9.47E- | 2 0.00E-
-0 0.00E-
2 0.00E- | -00.00E+
-00.00E+
-00.00E+ | 0 1.95E-1
0 0.00E+0
0 1.95E-1 | 1 2.07E-2
0 0.00E+0
1 2.07E-2 | 3.86E-1
0.00E+0
3.86E-1 | 3.53E-1
0.00E+0
3.53E-1 | 0.00E+0
0.00E+0
0.00E+0 | | RSF | = | [kg] 7
[MJ] 0 | .15E+19.
'.86E-1 0.
.00E+00. | .13E+0 3
.00E+0 0
.00E+0 0 | 0.83E-3
0.18E-2
00E+0
00E+0 | 0.00E+0 0.
0.00E+0 7.
0.00E+0 0.
0.00E+0 0. | 82E-2 7
00E+0 0
82E-2 7
00E+0 0 | 7.82E-2 7
.00E+0 0
7.82E-2 7
.00E+0 0 | 7.82E-2
0.00E+0
7.82E-2
0.00E+0
0.00E+0 | 7.82E-2
0.00E+0
7.82E-2
0.00E+0
0.00E+0 | 9.47E-
0.00E-
9.47E-
0.00E-
0.00E- | 2 0.00E-
-0 0.00E-
2 0.00E-
-0 0.00E- | -00.00E+
-00.00E+
-00.00E+
-00.00E+ | 0 1.95E-
0 0.00E+
0 1.95E-
0 0.00E+
0 0.00E+ | 2.07E-2
00.00E+0
1 2.07E-2
00.00E+0
00.00E+0 | 3.86E-1
0.00E+0
3.86E-1
0.00E+0
0.00E+0 | 3.53E-1
0.00E+0
3.53E-1
0.00E+0
0.00E+0 | 0.00E+0
0.00E+0
0.00E+0
0.00E+0 | | RSF
NRS
FW |
 =
 }F | [kg] 7
[MJ] 0
[MJ] 0 | .15E+19.
'.86E-10.
.00E+00.
.00E+00. | .13E+0 3
.00E+0 0
.00E+0 0
.00E+0 0 | 0.83E-3
0.18E-2
0.00E+0
0.00E+0
0.00E+0 | 0.00E+0 0.
0.00E+0 7.
0.00E+0 0. | 82E-2 7
00E+0 0
82E-2 7
00E+0 0
00E+0 0 | 7.82E-2 7
.00E+0 0
7.82E-2 7
.00E+0 0
.00E+0 0 | 7.82E-2
0.00E+0
7.82E-2
0.00E+0
0.00E+0 | 7.82E-2
0.00E+0
7.82E-2
0.00E+0
0.00E+0
0.00E+0 | 9.47E-
0.00E+
9.47E-
0.00E+
0.00E+ | 2 0.00E-
-0 0.00E-
2 0.00E-
-0 0.00E-
-0 0.00E- | -00.00E+
-00.00E+
-00.00E+
-00.00E+
-00.00E+ | 0 1.95E-´
0 0.00E+(
0 1.95E-´
0 0.00E+(
0 0.00E+(| 1 2.07E-2
0 0.00E+0
1 2.07E-2
0 0.00E+0
0 0.00E+0 | 2 3.86E-1
0 0.00E+0
2 3.86E-1
0 0.00E+0
0 0.00E+0 | 3.53E-1
0.00E+0
3.53E-1
0.00E+0
0.00E+0
0.00E+0 | 0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0 | | NRS | ren | [kg] 7
[MJ] 0
[MJ] 0
[m³] 8
PERE =
ewable p
non-rene
newable p | .15E+19.
.86E-1 0.
.00E+0 0.
.00E+0 0.
.90E-2 1
Use of rrimary eewable porimary e | 13E+0 3
.00E+0 0
.00E+0 0
.00E+0 0
.72E-3 2
 |
9.83E-3
9.83E-3
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.00E+0
9.0 | 0.00E+0 0.
0.00E+0 7.
0.00E+0 0.
0.00E+0 0.
0.00E+0 0. | 82E-2 7
00E+0 0
82E-2 7
00E+0 0
00E+0 0
00E+0 0
48E-5 1
y exclu
s raw m
non-re
s raw n | .82E-2 7
.00E+0 0
.82E-2 7
.00E+0 0
.00E+0 0
.00E+0 0
.48E-5 2
ding rematerials | 7.82E-2
0.00E+0
7.82E-2
0.00E+0
0.00E+0
0.00E+0
1.48E-5
newable
r; PERT
e prima
s; PENF
fuels; N | 7.82E-2
0.00E+0
7.82E-2
0.00E+0
0.00E+0
0.00E+0
1.48E-5
e priman
= Tota
iry ener
RT = To | 9.47E-
0.00E-
9.47E-
0.00E-
0.00E-
3.18E-
ry ener
Il use ogy resotal use | 2 0.00E-
-00.00E-
2 0.00E-
-00.00E-
-00.00E-
5 0.00E-
gy resort renew
burces use of non | -00.00E+
-00.00E+
-00.00E+
-00.00E+
-00.00E+
-00.00E+
urces us
able printing as renewals | 0 1.95E
0 0.00E++
0 1.95E
0 0.00E++
0 0.00E++
0 6.54E-5
ed as ranary eneaw mate | 2.07E-2
0.00E+0
1 2.07E-2
0.00E+0
0.00E+0
0.00E+0
4.05E-5
w mater
ergy reso | 2 3.86E-1
0 0.00E+(
2 3.86E-1
0 0.00E+(
0 0.00E+(
0 0.00E+(
1.17E-3
ials; PE
burces; FE
ENRM =
gy resou | 3.53E-1
0.00E+0
3.53E-1
0.00E+0
0.00E+0
0.00E+0
3.42E-4
RM = Us
PENRE =
Use of i | 0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
se of
= Use of
non-
I = Use | | NRS
FW
Captio | ren of s | [kg] 7 [MJ] 0 [MJ] 0 [m³] 8 PERE = ewable p non-rene newable p secondar | .15E+1986E-1 000E+0 000E+0 090E-2 1 Use of r rimary e ewable porimary e y materia | 13E+0 3
00E+0 0
00E+0 0
00E+0 0
.72E-3 2
enewab
energy re
energy re
energy re
energy re
energy re | 9.83E-30
.18E-2 (
.00E+0 (
.00E+0 (
.00E+0 (
.12E-5 (
.12 | 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 1.000E+0 1 | 82E-2 7
00E+0 0
82E-2 7
00E+0 0
00E+0 0
00E+0 0
48E-5 1
y exclus raw manual non-resident and n | .82E-2 7
.00E+00
.82E-2 7
.00E+00
.00E+00
.00E+00
.48E-5 2
ding rematerials
newable
naterials
condary | 7.82E-2
0.00E+0
7.82E-2
0.00E+0
0.00E+0
0.00E+0
1.48E-5
newable
i; PERT
e prima
fuels; N | 7.82E-2
0.00E+0
7.82E-2
0.00E+0
0.00E+0
0.00E+0
1.48E-5
e primar
= Tota
rry ener
RT = To
NRSF =
vater | 9.47E-
0.00E-
9.47E-
0.00E-
0.00E-
0.00E-
3.18E-
ry ener
Il use o
gy resi
tal use | 2 0.00E-
-0 0.00E-
-0 0.00E-
-0 0.00E-
-0 0.00E-
5 0.00E-
gy resources use of non-
f non-re | 00.00E+ 00.00E+ 00.00E+ 00.00E+ 00.00E+ 00.00E+ 00.00E+ urces usable printed as received as received as received as the printed as received as received as the printed as received as received as the printed as received rece | 0 1.95E
0 0.00E++
0 1.95E
0 0.00E++
0 0.00E++
0 6.54E-5
ed as ranary eneaw mate | 2.07E-2
0.00E+0
1 2.07E-2
0.00E+0
0.00E+0
0.00E+0
4.05E-5
w mater
ergy reso | 2 3.86E-1
0 0.00E+(
2 3.86E-1
0 0.00E+(
0 0.00E+(
0 0.00E+(
1.17E-3
ials; PE
burces; FE
ENRM =
gy resou | 3.53E-1
0.00E+0
3.53E-1
0.00E+0
0.00E+0
0.00E+0
3.42E-4
RM = Us
PENRE =
Use of i | 0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
se of
= Use of
non-
I = Use | | NRS
FW
Captio | ren of s | kg 7
MJ 0
MJ 0
m³ 8
PERE =
ewable p
non-rene
newable p
secondar | .15E+1986E-1 000E+0 000E+0 090E-2 1 Use of r rimary e ewable porimary e y materia | 13E+0 3
00E+0 0
00E+0 0
00E+0 0
.72E-3 2
enewab
energy re
energy re
energy re
energy re
energy re | 9.83E-30
.18E-2 (
.00E+0 (
.00E+0 (
.00E+0 (
.12E-5 (
.12 | 0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
ary energes used a
excluding
es used a | 82E-2 7
00E+0 0
82E-2 7
00E+0 0
00E+0 0
00E+0 0
48E-5 1
y exclus raw manual non-resident and n | .82E-2 7
.00E+00
.82E-2 7
.00E+00
.00E+00
.00E+00
.48E-5 2
ding rematerials
newable
naterials
condary | 7.82E-2
0.00E+0
7.82E-2
0.00E+0
0.00E+0
0.00E+0
1.48E-5
newable
i; PERT
e prima
fuels; N | 7.82E-2
0.00E+0
7.82E-2
0.00E+0
0.00E+0
0.00E+0
1.48E-5
e primar
= Tota
rry ener
RT = To
NRSF =
vater | 9.47E-
0.00E-
9.47E-
0.00E-
0.00E-
0.00E-
3.18E-
ry ener
Il use o
gy resi
tal use | 2 0.00E-
-0 0.00E-
-0 0.00E-
-0 0.00E-
-0 0.00E-
5 0.00E-
gy resources use of non-
f non-re | 0.00E+
0.00E+
0.00E+
0.00E+
0.00E+
0.00E+
0.00E+
urces us
able prin
ised as r
renewable | 0 1.95E
0 0.00E++
0 1.95E
0 0.00E++
0 0.00E++
0 6.54E-5
ed as ranary eneaw mate | 2.07E-2
0.00E+0
1 2.07E-2
0.00E+0
0.00E+0
0.00E+0
4.05E-5
w mater
ergy reso | 2 3.86E-1
0 0.00E+(
2 3.86E-1
0 0.00E+(
0 0.00E+(
0 0.00E+(
1.17E-3
ials; PE
burces; FE
ENRM =
gy resou | 3.53E-1
0.00E+0
3.53E-1
0.00E+0
0.00E+0
0.00E+0
3.42E-4
RM = Us
PENRE =
Use of i | 0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
se of
= Use of
non-
I = Use | | Captio RESU 1 kg (Param HWI | ren ren of s | kg 7 [MJ] 0 [MJ] 0 [MJ] 0 [m³] 8 PERE = ewable p non-rene ewable p secondar | 15E+19. 186E-1 0. 0 | 13E+0 3
.00E+0 0
.00E+0 0
.00E+0 0
.72E-3 2
enewab
energy re-
reimary energy re-
reinal; RSF A — OI | 0.83E-30
.18E-2 (0.00E+0)
.00E+0)
.00E+0)
.00E+0)
.12E-5 (1.12E-5)
.12E-5 (1.12E-5)
.12E-5 (1.12E-5)
.12E-5 (1.12E-5)
.12E-5 (1.12E-5)
.12E-5 (1.12E-5)
.12E-5 (1.12E-5)
.12E-5 (1.12E-5)
.12E-4 (1.12E-5) | 0.00E+0 0.
0.00E+0 7.
0.00E+0 7.
0.00E+0 0.
0.00E+0 0.
0.00E+0 1.
0.00E+0 1.
0.00E+0 1.
0.00E+0 1.
0.00E+0 1.
0.00E+0 1.
0.00E+0 1.
0.00E+0 1.
0.00E+0 1.
0.00E+0 1. | 82E-2 7 00E+0 0 82E-2 7 00E+0 0 00E+0 0 00E+0 0 00E+0 1 48E-5 1 y exclu s raw m non-re s raw n able sec | 82E-2 7
.00E+0 0
.82E-2 7
.00E+0 0
.00E+0 0
.00E+0 0
.48E-5 1
ding rematerials an ewable materials condary | 7.82E-2
0.00E+0
7.82E-2
0.00E+0
0.00E+0
1.00E+0
1.48E-5
newable
i; PERT
fuels; N
V
ASTE | 7.82E-2 0.00E+0 7.82E-2 0.00E+0 0.00E+0 0.00E+0 1.48E-5 e primae = Tota irry ener RT = To NRSF = vater C2/3 4.83E-5 | 9.47E- 0.00E- 9.47E- 0.00E- 0.00E- 0.00E- 3.18E- ry ener I use of gy resoluted use of the control contro | 2 0.00E-
00.00E-
00.00E-
00.00E-
00.00E-
00.00E-
5 0.00E-
gy reso
of renew
ources to
e of non-
f non-re | 0.00E+ | 0 1.95E 0 0.00E++ 0 1.95E 0 0.00E++ 0 0.00E++ 0 0.00E+- 0 0.00E+- ed as ranary ene aw mate |
2.07E-2
0.00E+0
1.2.07E-2
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00 | 3.86E-1 0.00E+0 0.00E+ | 3.53E-1 0.00E+0 3.53E-1 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of inces; SM Use of n | 0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
se of
= Use of
non-
\(\text{I} = Use\) | | Captio RESU 1 kg (| ren of s | kg 7
[MJ] 0
[MJ] 0
[m] 8
PERE =
ewable p
non-rene
nowable p
secondar
3 OF The
por clo
Unit (kg) 1
[kg] 1
[kg] 4 | .15E+1986E-1 000E+0 000E+0 000E+0 090E-2 1 Use of r rimary e ewable p primary e wable p to rimary e and the series of serie | 13E+0 3
.00E+0 0
.00E+0 | 0.83E-30
.18E-2
.00E+0
.00E+0
.00E+0
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.13E-3
.13E-4
.33E-2
.42E-7 | 0.00E+0 0.0 0.00E+0 0.0 0.00E+0 0.0 0.00E+0 0.0 0.00E+0 0.0 0.00E+0 1.0 0.00E+ | 82E-2 7
00E+0 0
82E-2 7
00E+0 0
00E+0 0
00E+0 0
048E-5 1
y exclus raw m
non-res raw m
shalle seconds and the seconds of second of the seconds second | 82E-2 7 00E+00 82E-2 7 00E+00 82E-2 7 00E+00 92E-2 7 00E+00 92E-2 7 00E+00 92E-2 7 00E+00 92E-2 | 7.82E-2
0.00E+0
7.82E-2
0.00E+0
0.00E+0
1.48E-5
newable
i; PERT
e prima
s; PENF
fuels; N
ASTE | 7.82E-2 0.00E+0 7.82E-2 0.00E+0 0.00E+0 0.00E+0 0.00E+0 1.48E-5 e primal " = Tota | 9.47E- 0.00E- 9.47E- 0.00E- 0.00E- 0.00E- 3.18E- ry ener l use of tal use Use of C3 2.98E- 1.35E- 5.11E- | 2 0.00E- 0 | 0.00E+ | 0 1.95E-00.00E+0 0 1.95E-0 0 0.00E+0 0 1.95E-0 0 0.00E+0 0 0.00E+0 0 0.00E+0 0 0.00E+0 0 0 6.54E-5 ed as ranary eneally ene | 2.07E-2
00.00E+0
2.07E-2
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00 | 3.86E-1 0.00E+0 3.86E-1 0.00E+0 0.00E+ | 3.53E-1 0.00E+0 3.53E-1 0.00E+0 0.00E+ | 0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
se of
= Use of
none
A = Use
et fresh
0.00E+0
0.00E+0
0.00E+0 | | Captio Captio RESU 1 kg (Param HWI NHW RWI CRU | ren ren of s | kg 7 [MJ] 0 [MJ] 0 [m] 8 PERE = ewable p non-rene newable p secondar GOF Tipor Clo Unit | .15E+1986E-1 000E+0 000E+0 000E+0 090E-2 1 Use of rimary exable porimary exable porimary exable and a series of the t | 13E+0 3
.00E+0 0
.00E+0 0
.00E+0 0
.00E+0 0
.72E-3 2
enewab
energy re
rrimary energy re
energy re
2
.64E-3 2
.68E-1 1
.13E-5 2
.00E+0 0 |
0.83E-30
.18E-2
.00E+00
.00E+00
.00E+00
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5
.12E-5 | 0.00E+0 0.
0.00E+0 0.
0.00E+0 0.
0.00E+0 0.
0.00E+0 0.
0.00E+0 0.
0.00E+0 1.
ary energies used a
excluding ses used a
of renewal | 82E-2 7 00E+0 0 82E-2 7 00E+0 0 00E+0 0 00E+0 0 00E+0 0 48E-5 1 y exclu s raw m non-re s raw n able sec WS A C2 83E-5 4 225E-7 5 00E+0 0 | 82E-2 7
.00E+00
.82E-2 7
.00E+0 0
.00E+0 0
.00E+0 0
.00E+0 0
.48E-5 1
ding rematerials
anewable of the secondary
ND W | 7.82E-2
0.00E+0
7.82E-2
0.00E+0
0.00E+0
0.00E+0
1.48E-5
newable
i; PERT
e prima
s; PENF
fuels; P
ASTE | 7.82E-2 0.00E+0 7.82E-2 0.00E+0 0.00E+ | 9.47E-
0.00E-
9.47E-
0.00E-
0.00E-
3.18E-
1 use c
gy resital use c
Use c
C3
2.98E-
1.35E-
5.11E-
0.00E-
0.00E-
1 use c | 2 0.00E-0 | 00.00E+ | 0 1.95E0
00.00E++0
0 1.95E0
00.00E++0
00.00E++0
00.00E++0
00.00E++0
00.00E++0
00.00E++0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
00.00E+0
0 |
2.07E-2
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+0
0.00E+ | 3.86E-1 0.0.00E+0 0.00E+0 0.00E+0 0.0.00E+0 | 3.53E-1 0.00E+0 3.53E-1 0.00E+0 | 0.00E+0 | | RESU 1 kg (Param HWI NHW RWI CRI MIFF | ren ren of s | kg 7
[MJ] 0
[MJ] 0
[m] 8
PERE =
ewable p
non-rene
ewable p
secondar
OF TH
OOT Close
Unit
[kg] 1
[kg] 4
[kg] 2
[kg] 0
[kg] 0 | .15E+1 986E-1 086E-1 080E+0 090E+0 0. | 13E+0 3 | 0.83E-30
.18E-20
.00E+00
.00E+00
.00E+00
.00E+00
.00E+00
.12E-50
le prima
esource
energy
esource
= Use of
.19E-40
.33E-20
.42E-70
.00E+00
.33E-10
.00E+00 | 0.00E+0 0. 0.00E+0 0. 0.00E+0 7. 0.00E+0 7. 0.00E+0 0. 0.00E+0 0. 0.00E+0 1. 4. 0.00E+0 4. 0.00E+0 0. 0.00E+0 0. 0.00E+0 0. 0.00E+0 0. | 82E-2 7 7 00E+0 0 82E-2 7 7 00E+0 0 0 | 82E-2 7 .00E+00 .00E+0 | 7.82E-2
0.00E+0
7.82E-2
0.00E+0
0.00E+0
0.00E+0
1.48E-5
hewable
i; PERT
e primas; PENF
fuels; N
ASTE
C2/2
4.83E-5
4.01E-3
5.25E-7
0.00E+0
0.00E+0 | 7.82E-2 0.00E+0 7.82E-2 0.00E+0 0.00E+0 0.00E+0 1.48E-5 e primal = Tota rry ener RT = To WRSF = vater C2/3 4.83E-5 4.01E-3 5.25E-7 0.00E+0 0.00E+0 0.00E+0 | 9.47E- 0.00E- 0.00E- 0.00E- 0.00E- 0.00E- 0.00E- 3.18E- Ty eneu I use c gy resset tal use c Use c C3 2.98E- 1.35E- 5.11E- 5.11E- 0.00E- 4.86E- 0.00E- | 2 0.00E-0 | 0.00E+ | 0 1.95E-0 0.00E+1 0 1.95E-1 0 0.00E+1 | 2.07E-2
0.00E+0
1.2.07E-2
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0 | 3.86E-1 0.0.00E+0 0.00E+0 0.0.00E+0 0.0.00E+1 0.0.00E+1 0.0.00E+1 0.0.00E+1 0.0.00E+2 0.0.00E+2 0.0.00E+2 0.0.00E+2 0.0.00E+4 0.0.00E+4 0.0.00E+4 0.0.00E+4 0.0.00E+0 0.0.00E+0 0.0.00E+0 | 3.53E-1 0.00E+0 3.53E-1 0.00E+0 | 0.00E+0 | | Captio RESU 1 kg Param HWI NHW RWII CRU | ren ren of s | kg 7 [MJ] 0 [MJ] 0 [m] 8 PERE = ewable p non-rene ewable p secondar OF Th or clo Unit [kg] 1 [kg] 2 [kg] 0 [kg] 7 [kg] 7 [kg] 7 | .15E+1 986E-1 000E+0 000E+0 000E+0 000E+0 090E-2 1 Use of r rimary e ewable p orimary e and a series of the se | 13E+0 3 | 0.83E-30
.18E-21
.00E+01
.00E+01
.00E+01
.00E+01
.12E-51
le primalesource
energy / esource
= Use (1)
.19E-41
.33E-21
.42E-71
.00E+01
.33E-1
.00E+01
.58E-21 | 0.00E+0 0.00E+ | 82E-2 7 7 00E+0 0 82E-2 7 7 00E+0 0 0 | 82E-2 7 .00E+0 0 .00E | 7.82E-2
0.00E+0
7.82E-2
0.00E+0
0.00E+0
0.00E+0
1.48E-5
hewable
i; PERT
e prima
s; PENF
fuels; N
ASTE
C2/2
4.83E-5
4.01E-3
5.25E-7
0.00E+0
0.00E+0
0.00E+0 | 7.82E-2 0.00E+0 7.82E-2 0.00E+0 0.00E+0 0.00E+0 1.48E-5 e primal = Tota Iry ener RT = To WRSF = vater C2/3 4.83E-5 4.01E-3 5.25E-7 0.00E+0 0.00E+0 0.00E+0 0.00E+0 | 9.47E- 0.00E- 9.47E- 0.00E- 0.00E- 0.00E- 3.18E- 1 use c gy resset Use c C3 2.98E- 1.35E- 5.11E- 0.00E- 0.00E- 0.00E- 0.00E- 0.00E- | 2 0.00E-0 | 0.00E+ | 0 1.95E-0 0.00E+0 0 1.95E-0 0.00E+0 0 1.95E-0 0.00E+0 |
2.07E-2
0.00E+0
1.2.07E-2
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0 | 3.86E-1 0.0.00E+0 0.00E+0 0.0.00E+0 0.0.00E+0 0.0.00E+1 1.17E-3 ials; PE purces; FE NRM = gy resou s; FW = C4/1 1.45E-2 1.45E-2 1.45E-2 0.0.00E+0 0.0.00E+0 0.0.00E+0 0.0.00E+0 | 3.53E-1 0.00E+0 3.53E-1 0.00E+0 | 0.00E+0 | | RESU 1 kg (Param HWI NHW RWI CHE | ren ren of s | kg | .15E+1 986E-1 000E+0 000E+0 000E+0 000E+0 090E-2 1 .0se of r rimary e ewable p primary e ewable p .0se of r .34E+0 541E+0 477E-4 600E+0 077E-4 0668E-4 0. ardous v | 13E+0 3 10E+0 | 0.83E-30
.18E-21
.00E+01
.00E+01
.00E+02
.12E-51
le primissource energy esource = Use of the control t | 0.00E+0 0. 0.00E+0 0. 0.00E+0 0. 0.00E+0 0. 0.00E+0 0. 0.00E+0 0. 0.00E+0 1. 4. 0.00E+0 4. 0.00E+0 5. 0.00E+0 0. 0.00E+0 0. | 82E-2 7 7 00E+0 0 82E-2 7 7 00E+0 0 00 | 82E-2 7 .00E+0 0 .00E | 7.82E-2 0.00E+0 7.82E-2 0.00E+0 0.00E+0 0.00E+0 1.48E-5 newable i; PERT e primas s; PENF fuels; N ASTE C2/2 14.83E-5 4.01E-3 5.25E-7 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 | 7.82E-2 0.00E+0 7.82E-2 0.00E+0 0.00E+0 0.00E+0 1.48E-5 e primae = Tota rry ener RT = To NRSF = vater C2/3 4.83E-5 4.01E-3 5.25E-7 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 | 9.47E- 0.00E- 9.47E- 0.00E- 0.00E- 0.00E- 1.00E- 1. | 2 0.00E-0 | 0.00E+ | 0 1.95E-0 0.00E+0 0 1.95E-0 0.00E+0 0 1.95E-0 0.00E+0 0 0.00E+0 0 6.54E-5 ed as range energy | 2.07E-2
0.0.00E+0
1.2.07E-2
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0
0.0.00E+0 | 3.86E-1 0.00E+0 0.00E+ | 3.53E-1 0.00E+0 3.53E-1 0.00E+0 0.00E+ | 0.00E+0 | Other end of life scenarios have been calculated in order to build specific end of life scenario at the building level: - scenario 1: the product is considered to be 100% incinerated - scenario 2: the product is considered to be 100% landfilled - scenario 3: the product is considered to be 100% recycled #### 6. LCA: Interpretation This chapter contains an interpretation of the Life Cycle Impact Assessment categories. When expressed as a percentage, the impact refers to its magnitude expressed as a percentage of total product impact across all modules, with the exception of module D. Production stages (A1 and A3) are the main contributors to all environment indicators, especially for the ADP-elements indicator for A1 phase. Its impacts are mainly due to aluminium and steel extraction and production. A3 impacts come from aluminium and steel losses during the manufacturing of the product. Transport stage A4 has a non-negligible impact for the ODP. The results are conservative as complying with the composition given in section 2.6. #### Requisite evidence No testing results are required by the PCR part B. #### 8. References #### ISO 14040 ISO 14040:2006 - 10, Environmental management – Life cycle assessment – Principles and framework (ISO 14040:2006); German and English version EN ISO 14040:2006 #### **DIN EN ISO 14044** DIN EN ISO 14044:2006-10, Environmental Management – Life Cycle Assessment Requirements and Instructions (ISO 14044:2006); German and English version EN ISO 14044:2006 #### **CEN/TR 15941** CEN/TR 15941:2010-03, Sustainability of construction works – Environmental Product Declarations – Methodology for selection and use of generic data; German version CEN/TR 15941:2010 #### EN 1154 EN 1154:1996/AC:2006, Controlled door closing devices – Requirements and test methods #### **EN 1158** EN 1158:1996/AC:2006, Door coordinator devices – Requirements and test methods #### FD P01-015 FD P01-015:2006, Environmental quality of construction products – Energy and transport data sheet #### **European Waste Code** epa – European Waste Catalogue and Hazardous Waste List – 01-2002. #### **Ecoinvent 3.1** Ecoinvent 3.1 – Allocation Recycling database. #### IBU PCR part A Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Project report, 2016-08. #### **IBU PCR part B** Part B: Requirements on the EPD for Building Hardware products, 2016-02. #### **Institut Bauen und Umwelt** Institut Bauen und Umwelt e.V., Berlin(pub.): Generation of Environmental Product Declarations (EPDs); www.ibu-epd.de #### ISO 14025 DIN EN ISO 14025:2011-10: Environmental labels and declarations — Type III environmental declarations — Principles and procedures #### EN 15804 EN 15804:2012-04+A1 2013: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products #### **Publisher** Institut Bauen und Umwelt e.V. Tel Panoramastr. 1 Fax 10178 Berlin Mail Germany Web Tel +49 (0)30 3087748- 0 Fax +49 (0)30 3087748- 29 Mail info@ibu-epd.com Web **www.ibu-epd.com** #### Programme holder | Institut Bauen und Umwelt e.V. | Tel | +49 (0)30 - 3087748- 0 | Panoramastr 1 | Fax | +49 (0)30 - 3087748 - 29 | 10178 Berlin | Mail | info@ibu-epd.com | Germany | Web | www.ibu-epd.com | #### **Author of the Life Cycle Assessment** CETIM Tel 0033477794042 rue de la presse 7 Fax 0033477794099 42952 Saint-Etienne Mail sqr@cetim.fr France Web www.cetim.fr #### Owner of the Declaration ARGE; European Federation of Associations of Lock and Builders Hardware Manufacturers Offerstraße 12 42551 Velbert Germany Tel +49 (0)2051 9506 36 Fax +49 (0)2051 9506 25 Mail info@arge.org Web www.arge.org